
CALCULATIU-I OF PRESSURE lN THE LXNEAR PROBLEM OF VIBRATOR 
IN A SUPERSONIC BOUNDARY LAYER 

PMM Vol.43, No.6, 1979, pp. 1014-1028 
E. D. TERENT’EV 

(Moscow) 
(Received November 20, 19’78) 

The supersonic flow over a body consisting of a triangular oscillating plate - 
the vibrator - mounted between two flat plates is investigated. The body is 
assumed to be thermally insulated, and the vibrator dimensions and the oscil- 
lation frequencies to be such that the flow can be defined by equations of a 

boundary layer with self-induced pressure [l - 5). The oscillation amplitude 
is assumed small SO that these equations can be linearized. The Fourier trans- 
form Of the longitudinal coordinate is used for solution derivation. The inverse 
Fourier transform is obtained by numerical methods. It is shown that the pert- 
urbations of flow parameters induced by the vibrator are damped upstream and 
downstream in accordance with an exponential law. 

1. Statement of the problem. Weconsidertheflowovec a 
thermally insulated body consisting of a flat plate at rest changing into an oscillating 
~ian~lar part -the vibrator - and ending with an immovable flat plate (Fig. 1). The 
length of the front part is L* and that of the rear part 0 (L*) (the asterisk denotes 
dimensional quantities). The vibrator dimensions are assumed small and will be de- 
fined below. The unperturbed oncoming supersonic stream at Mach number *If, 

-=L$+ 

exceeding unity by a finite quantity flows over 
the stationary parts of the plate at velocity u,. 

Gas parameters of the unperturbed steady stream 
and at the wall are denoted by superscripts 03 
and w , respectively. We use the Cartesian 

Fig. 1 system of coordinates x, y with origin at the 
point of junction of the forward immobile part 

with the oscillating pact, The following notation is used: t* for time, r&* and z+,* 

for the velocity vector components, Q* for density, I>” for pressure, T* for temp- 
erature, and x for the specific heat ratio. For simplicity we assume the dependence 
of the first viscosity coefficient on temperature to be linear, i. e. hi*&,* = CT’, 
where T’ = T* / Too” , and the Prandtl number to be unity. As the inverse of the 

Reynolds number we use the small parameter e = Rel-‘i* (Re, = p,*U,*L” / 

h,,*). 
tit us select the longitudinal dimension of the oscillating part 0 (c3), the oscil- 

lation amplitude u ( e5) and frequency 0 ( ev2). For defining the motion it is 
convenient to separate three distinct regions [I, 21 : the upper region of the Super’sOniC 

inviscid flow (Y1 = 0 (eYt7 th e intermediate region of the conventional boundary 

layer, (Ys = 0 (e*>f , and the lower region of the boundary layer with self-induced 
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pressure (ya = 0 (es)). The main ~f~c~l~~ of such scheme are related to the 
construction of solution for the inner region, a solution that makes it possible to obtain 
the flow parameters in the intermediate and outer regions in explicit form (I- SJ. 
Below, we deal only with the inner region, where we introduce the follo~ng dimen- 
sionless dependent and independent variables [4,5]: 

t* = L*E’$ C”,d-$1: (J&_s - 1>-% T,,‘t (l*V 

x* = L*E3C’Jt7/I+f,2 - $)-‘is T;“x 

y* -_ L;*@C’fih-‘jI (M,s -~)-%T;l”y 

v,* ;=: u,* &“J.&‘h (M-3 -+%T;” u. 

usr” zzz u,” ~3c’ls~‘h (&j&2 -.j)‘i* T;” v 

p* zzz pm* + ~~~U~~~C~i4~~/~ (M,2 ---1)-“b p 

P 
*- 

- Pm * T,‘P 

The constant h = 0.3321 in formulas (1.1) is defined by the equality L* 
~e,-%a (u,*,U,) /’ &* = hC-‘I* T, ’ in co~ormi~ with the Blasious solution for 
the unperturbed boundary layer. Substituting the expressions (1.1) into the system of 
Navier - Stokes equations, retaining principal terms containing E , and stipulating 
the ~lfilm~t of conditions of merging with the conven~onal boundary layer, as x 3 
- 00 and Y-+00, for the unsteady boundary layer with self-induced pressure 
(4,511 we obtain 

We specify the adhesion conditions at the wall as 

U = U,, u = t?, (X.3) 
and the oscillating part of the wall by the equation 

yut = o;f, (5) cos cot, fT<j (1.4) 

where 0 is the dimensionless frequency and function fl(s) (Fig. 1) defines the 
triangular form with parameters a and b 

0 t x<o 
2x 
2b(a---x)+--b); 

O\cx<b 
b\<s<a 

(1.5) 

0 1 z>a 

The smallness of parameter (3 enables us to linearize the problem by expanding 
the u~own functions in series in powers of o 
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u = y + UUl -j- . . .f u = wy + * . f, P = vi + - - * 

whose substitution into (1.2) yields 

(1.6) 

X-+--05, u1 - 0, PI 3 0 
x 

y-> 00, z.414 - s p1 ax 
-02 

Such linearization is valid everywhere where u1 = 0 (l), except in region 
Y 3 0, i. e. at the wall where the adhesion con~tio~ (I., 3) hold, To obtain 

conditions for functions z.41 and Vl we introduce a supplementary subregion with the 
characteristic variable Yr = Y / u in which we seek a solution of the form 

u = rsuz + . . ., u = (ruz + . . ., p = apz + . . . (1.7) 

Conditions (1.3) at the wall for the newly introduced functions are now of the form 

24~ (t, 5, fl CoS @t) = 0, ur (t, 2, fi COS M) = - C@,sin wt (1.8) 

For Yr -+ co the valid conditions of merging with functions u1 and V1 at 
Y 40 are 

Substituting functions (1.7) into the system of Eqs. (1.2) we obtain 

8Vl I dyr = 0, @Uz I aysz = 0 

The solution of this very simple system which satisfies conditions (1.8) is of the 

form 
Uz = ‘l/it; (l, x) --E (t, x) f&x) co.5 ot 

ur = - of%(x) sin wt 

where F (t, x) is an arbitrary function, From (1.9) we find that F (t, 5) 5 1 
and, also, obtain the conditions for functions u1 and ul. at y = 0 

%(& 5, 0) = -f&E) cos wt (1.10) 
VI (k 5, 0) ;= -wfl (32) sin ot 

Problem (1.6). (1.10) was studied in [S], where the unknown functions u1 , Ur, 
and p1 were expanded in Fourier integral in variables t and x, but the sought 
functions were not calculated. The aim of this investigation is to carry out these 
calculations and, also, to analyze the asymptotic properties of solutions of problem 

(1.6)s (I. 10). 

2. Calculation of p I e t s u t e. As in [6], we shall study pressure 
using equations of the form 
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cc cv 

Pl = + cos wt s a1 dw2 - +sinwt S @a dw.L (2.1) 

OD, = Re (Q,),-&, = Im (CD,,), Q, z&,, -ml,, 

%O = & [ 1- --& exp (- io&) + --&exp (- iola)]exp (iozz) 

@lo = 011 + 012 + @)18, CD11 = (io2)W exp (iogz) 

CD 12 = - -& (io,)‘laG exp [ io2 (J: - b)] 

O== -&- ( ioz)‘llG exp [ iw2 (z - a)] 

Q1 = i’lroy231r 

G = (I,, - 11 (SW) Mi (QJ + (io2P (IO - 1, (Q,))l-l 
Ai’ (Q2,) = d yJIQ1) 

mew 
IO = s Ai (z) dz, II(%) = TAi(z)dz 

cp = (~$2 + arg 0.J / 3 O 

where the symbols Re and Im denote the real and imaginary parts of the complex 
Airy function Ai (2) which can be specified by the everywhere convergent series 

00 

E 

s3k 
00 

Ai = -$- 
z 

z 
zSk 

k=O k! 32kI’ (k + 2/a) 
-7 

3 /a k=O k! 32kr (k + %) 1 (2.2) 
which is the generally accepted definition of the Airy function [7,8];the definition used 
in [5,9] differs from (2.2) by a constant factor. Since formulas (2.1) defining pressure 

p1 contain the ratio of Airy functions, they are independent of that factor. 
In conformity with (2.1) the calculation of pressure p, reduces to the calculation 

of the integral 
m 03 

1 0odo2= f D,x,do2- s (-ho doa (2.3) 
-CO -00 -co 

where the first integral in the right-hand side is explicitly determined by 
OD 

s 
0sr,dw2 = TC sign (2) 

[ 
-&sign@-_)+ -&- sign (5 -a) (2.4) 1 --m 

The second integral in the right-hand side of (2.3) is equal to the sum of three in- 
tegrals of functions (DI1, ml2 and C&s. Since the integrands @r2 and mls dif- 

fer from OI1 only by constant factors and by values of parameters in the exponent 
index, their respective integrals are calculated similarly to the integral of (D,,. 

Let us calculate the integral of aI1. From (2.1) we have 
00 00 

I2(%4 = S ~11~2= S ewPd" (IO-ZI @I)) _oD Ai'(QJ+Wd'~' VO--~I(QIN do2 ' (2.5) -00 
f = f$il2 
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Let us analyze the integrand in (2.5) in the complex plane of the variable 0,. 
To separate the single-valued branch we have to make a slit in it, Using the Airy fun- 
ction property 

IAi(z0, Izl-+~, --n/3<ar@;z,(n/3 

we make the slit from point 0 along the imaginary axis, i. e. 
-3% I 2, then 

5c I 2 > arg 0, > 

DC 

I,, = 
s 
l Ai(x) 

3”2r (y*) f (h/s) 

2n 
0 

(2.6) 

Let us determine the roots of the integrand denominator, which are poles of the 
latter; the equation which determines them is conveniently written in terms of the only 
variable !& 

P1 (o, 8,) = Q12Ai’ (56,) - o2 (1, - 1,) (8,)) = 0 
---n/6 < arg 9, < 7nf6 

(2.7) 

The constraints imposed on arg 611 are related to those imposed on arg oz. 
Having fixed o , we plot in the complex plane QX two sets of level curves: Re (PZ 
(0, Q,)) = 0 and Im (Pr (0, 8,)) = 0 ; the intersectron points of curves of the 
different sets determine the roots of Eq. (2.7). A characteristic pattern of level curves 

Fig. 2 Fig. 3 

(0 = 2) is shown in Fig. 2, where the solid curves represent lines Re {P,) = 0, the 
dash curves the lines Im (PI) = 0, and the part of the complex plane 52, where 

the constraint (2.7) on arg S& are not satisfied is shown shaded. The roots of Eq. 
(2.7) are indicated by symbols Br**, S&o*, !&I*, . . . . 

Ou the negative part of tne real axis we have a denumerable set of roots tending to 
infinity. In the first quadrant we have one root B,,,* , and in the fourth quadrant 
also the single root S&* * which must be rejected, since it lies in the “prohibited” 

part of the plane of variable Q1. However root Q1** may be used for the conven- 
ience of calculations, since it has to be taken into account when passing on the second 
sheet of a complete Riemann surface of variable 02, as will be done in Sect.3.But 
no physical meaning can be assigned to the root C&**, since 02** with arg 
Cl&** > n/2 correspond to it, and for such o2 equality (2.6) does not hold. Cm 
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the contrary, roots a,,*, Qsl*, . . . can be readily interpreted. For this we return 
to the plane 0~ represented in Fig. 3. The roots QXO* and S&l*, S&s*+..+ turn into 

QhO' which lies in the fourth quadrant and into ash*, ~ss*, . , ., which lie on the 
segment issuing from the coordinate origin at angle -5n/4. For considerable o 
the first roots Q,,!, &*, . . . lie not on the negative axis itself but in its neighbor- 
hood. However, as O-+00) the relations arg Qll* + n and arg 61,s’ - 
R., . . . are valid. The result of this is that part of roots on*, %z*, . . . have argu- 
ments are not equal -53~14, but close to that figure. 

The equation (2. ‘I) expressed in other variables had already appeared in literature 
[3,5]. It occurs in the form of a dispersion relation in ~v~tigation of a special kind 
of perturbations that propagate up - and downstream of the flow. The roots of that 
equation correspond to some characteristic solutions of (1.6). Thus osa+ generates 
a solution that defines the damping of perturbations upstream (3 < 0) s and when 

o = 0 it becomes the solution obtained in [lo]. The characteristic functions gen- 
erated by %l*r %2*, * * * can be interpreted as perturbations that propagate down- 
stream [6]. 

As noted in [6], it is convenient, when calculating integral (2.5), to separate in 
the plane wz two contours. For 2 < 0 we select the integration path ci (Fig. 3) 
in the lower half-plane consisting of the segment of real axis from r to -r bypass- 
ing point 0 and of the arc of circle of radius r . For z > 0 we select C, as 
the ~tegration path which basically lies in the upper half-plane and consists of a 

segment of the real axis from - 1^ to r bypassing point 0 and of the arcs of circles 
of radius r, and the two edges of the slit along the imaginary axis, bypassing point 

0. Applying the Cauchy theorem on residues to the integral along the contour cr 

and making the radius of the large semicircle r approach infinity, and that ofsmall 

semicircle to approach zero, in the case of L-C < 0 we obtain 
n? 

s 
@rr dos = - 2ni res au (ot$) = B (a, wzo*) exp (ios~*z) (2.8) 

-m 

B = -33-G IO - 1, Gho*, 
2i (I, - I1 (Q,,*)) + S&p (i - 09 I mm*‘) Ai (S&O*) 

The theorem on residues can be also applied to contour cs with the only differ- 

ence that the circle enveloping point 0 is to be contracted not continuously but 

discretely, drawing it each time between the adjacent poles ask* and e.?sk+r*. 

The series in residues PCS @ii (%k) is rapidly convergent, since lres f&i (ask) 1 
= 0 (k-3) when k-too. As the result in the case of z > 0 we have 

m 

5 @ri dos = 2xi 2 res Qll (a$) + 13 (0, z) + 14 (W4 (2.9) 

-_g, k=il 

where I3 and II are integrals of dDll taken along the edges of the slit. Each 

term in the right-hand side of (2.9) may be considered as a running wave of varying 
amplitude, as was done in [ll]. 

Formula (2.8) is quite convenient for use on a computer, which cannot be said 
about formula (2.9). It presents particular difficulties in the computation of integrals 
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I3 and II. We shall choose a method of computation that is not based on form- 
ula (2.9). We use the Cl contour also for 5>0 9 denoting its part consisting of 
the semicircle of radius r by cr, , and apply the theorem on residues (with decreas- 
ing radius the integral along the small semicircle of contour C1 approaches zero in- 
dependently of the sign of X) 

r 

s 
@‘11doz = 

cl 
%I d@2 - 2xi res @)n (aso*) (2.10) 

--P 1r 

For r > 1 in the computation of the integral along the C1, contour the quant- 
ity [sZ,l = o/rQ((l. For such values of && we replace the Airy function 
by series (2.2), and write the fraction in the integrand of (2.5) in the form (see (2.1)) 

G OJh Ql> = Q12 ( kgoc,xQlh) ( k~oc,ks21’)-1 (2.11) 

where the coefficients elk and csk are determined using the series expansion of 
the integral and the derivative of the Airy function, which are obtained by term-by- 
term integration and differentiation of series (2.2). Coefficients %k depend on 0. 

We divide the series in the right-hand side of (2.11) and obtain 

G (a, Q,> = Q12 k&O t c&&I + * * - + cg,k f&k + . . .) (2.12) 

Note that in this formula cg.0 = -1 / co2 and cg,l = 0. We substitute expan- 
sion (2.12) into integral (2.10) and pass to the variable 0s (we recall that as shown 
in (2.5) i = eix12) 

0 + * - * 4 
il+k / s02+k 

g, 1+2k/3 
(2.13) 

02 

exp (io24 dw2 

Integration of each term of series (2.13) can be carried out analytically, to do this 
it is convenient to separate three groups of terms two of which depend on the r-func- 

tion. passing to limit with r + 00 we obtain 
co 

Ic (w, x) = h-n s tD)n do2 = - 2Jc6.9 
l.-cQ z 

(io)“k zak B - (2.14) 

c 1r k==o 

i JCFlY (A$-) w3x*/8 2 (ic@kx2’ 2,3_5,:f: Ti + s,3/s) + 

k=l 

The lower boundary of the index k of the second sum in (2.14) is unity, since as 
noted above cg,l = 0 this equality ensures the vanishing of the derivative dIc I 

&c when x = 0. This method of computation of the integral Ic (0, Z) is con- 
venient when o> 1. For o < 1 formula (2.11) must be expanded in series 

using the variable 51, = Q1 I o. This evidently results in the change of coeffici- 

ents cg,r (of course, as previously, cg.1 = 0). A series similar to (2.14) may 
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in turn be obtained from (2.14) be setting in it o = 1. The selection of expansion 
in the variable &?I or 62, is affected by that coefficients c&k have to be comput- 
ed prior to their substitution to series (2.14). Hence for a specified w it is desirable 

to use a modification of the expansion such that would ensure a not too rapid increase 

of coefficients cg,r with increasing number k. Using (2.8) and (2.14) from form- 
ula (2.10) we obtain 

do 

!i_ Ql,,dw, = B (0, %J*f exp (&o*~) + fc (W 3 (2.15) 

We extend the notation 1~ (0, LC) introduced in (2.14) to the new independent 

variables, and shall use the symbol Ic(o, 5 - 50) to define series (2.14) in which 
5 - JO has been substituted for z . This makes it possible to write 

m 

s_ 
% d@z =-&W o, @so*) exp (iwBO* (z - b)) + IC (0, z - b)l (2.16) 

Finally, substituting (2.4), (2,15), and (2. IS) into formula (2.3), for the integral 
of @o which according to (2.1) defines pressure we obtain 

m 
(2.17) 

& exp (- iwsO*a)] exp (ioss*s) + 0 (r) [2n - IC (oh31 - 

The use of formula (2.1’7) on a computer does not present any difficulti~* and 

the computation time which is mainly consumed by the calculation of the segment 

of series (2.14) with the superscript limit k < 15. 
The dependence of pressure pr on 2 for a triangle of dimensions b=l and 

0 = 2 oscillating with frequency 0 = 1 for instants of time i = 0, T 1 8, T / 4, 

3T I 8, where T = 2n I o , is shown in Fig.4 by curves I-IV , respectively. 

The derivative of pressure with respect to z at points z = 0 b, and a is continuous 
but, as implied by the expansion (2.14), the second derive a’$ I aza has at these 

points a discontinuity of the second hind, that is related to the discontinuity of deriva- 
tive ay, I ax. 

The graphs of dependence of pressure amplitude of z are shown in Fig. 5 
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for a triangle, with same dimensions as for Fig. 4, oscillating with frequencies o = 0 

(stationary triangle); 1; 3. If flow over stationary triangle has the point 5, in which 

A (pl) = 0, then there will not be such point for flow over oscillating triangle. 

3. Asymptotics of pressure when x-+00 and w-+w. 
The behavior of pressure as 5 --f - 00 is obtained from the analysis of formula(2.17). 

Since Iru Was* < 0, the pressure tends to zero in conformity with the exponential 

law exp (- Im (o~~*)z). when z + oo formula (2.9) makes it possible to 

assert that 1s (0, 3) --f 0 since the integrands of integrals 1e (o), z) and I4 (:a, 
z) are ~~nentially decreasing functionsi, and the series consists of terms each of which 

decreases according to an exponential law. The determination of the asymptotics of 

integrals fa and 1, does not present any difficulties, but the determination of 

asymptotics of series (2.9) is fraught with difficulties. Note also that as 2-+cx3, 
formula (2.15) cannot be used for computations, since it results in the remainder of 

t 

Fig. 4 

-4 -2 D 2 2 

Fig. 5 

two quantities both approaching infinity. 
The analysis of integral (2.5) when z -+ co is again carried out in the complex 

plane 02. As the integration path we select contour Cs consisting of a segment 

of the real axis bypassing point 0, two arcs CSrl and CsrB , and two segments 

s1 and C,, bypassing point 0. Let the angle of inclination a of segment Car 
to the real axis be less than n / 4 (see 
Fig, 6). Making the radii of arcs CSrl 

and Car2 approach infinity and the 

radius of the bypass of point 0 tend to 
zero, for zc > 0 we obtain 

m 

cftll~s 

Fig. 6 
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The integrals Csl and Css with the respective substitution of variables assume 
the form 

C 31: aa -_ .&aq, Ql = &, = &W-W3)q-% (3.1) 
00 

(3.2) 

We investigate integral (3.1) in the upper half-plane formed by the first and second 
sheet of the complete Bemann surface. We have now for argo2 the constraint 
n > arg 0s > 0. &I the second quadrant we have the first order pole or**3 

which corresponds to the root of the variance relation f&** (see Fig, 2) and, as 
shown by the analysis of function os** (w), the inequality arg os** > 3n / 4 
is correct. If the ray issuing from the coordinate origin at angle @ is taken as the 
integration path in (3.1). the integral (3.1) is independent of angle @ when 

0 < p < arg 02** (3.3) 
Taking into account (3.3) and setting fi rr=: 5~ - a, we obtain for a the inequaf- 

ity 
3t -arg q**<a(n/4 

(3.4) 

The set of a that satisfies inequa~ty (3.4) is nonempty, since, as indicated prev- 
iously, arg a** > 3ni4. Note that if a is chosen not from the range (3.4) but 
from the wider range 0 < a < n / 4, the final result remains unchanged, although 
it is then necessary to take into account the residue res Cprl (N**). 

Setting p = ax - a and carrying out integration with respect to G’,;, we 
rewrite integral (3.1) in the form 

c,,‘: 0s =r ei+u) q, &?I s Qr, = e-WV+W3) ,p”/a 
(3.5) 

.~ 

i ( + - +)I (G - ll (Go)) Vi (%A + 
&a&$h (lo - II (st13))]+ q’I* dq 

cplk 41 4 = - ixq cos a - xq sin a 

Combining integrals (3.2) and (3.5) we obtain 
03 eo 

s @llh = _ i@aals 
s 
&Pl(% f2.W 

-0D 0 
(3.6) 
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Hi’ (G) (IO - Ix (~13)) + einlsAi’ (f&J (IO - II (f&&l Pi (%z) $ 
e-i~I%f~~ (1, - II (st13))]-’ [Ai’ (C&J + 
e-iW/3+4aa13)g418 (I, - ~,(Ql,))l--" q""dq 

According to [8] the Airy function satisfies the relation 

& (2) + e-~*is Ai (e-2xilsZf + e-~~ls& (@r*isz) = 0 (3.7) 

Differentiation and integration in (3.7) yields the corollaries 

Ai’( ~2niisAi’(e-4ni/2z) + e-~iISAi’(@nf/3~) = 0 (3.8) 
z ,,2ni 13 te-4JCi/3 

s Ai (21) & + s Ai (zl) dzl f s 
Ai (zJ dz, = 0 

0 0 0 

We apply relations (3.8) to the expression in brackets of the numerator of fraction 

(3.6) and obtain 

m 

s 
@zrd~2 = - ie-*~a!s~ eat@ Q* a)G, (co, q, a) q’/* dq (3.9) 

--m 
Gi (0, q, a) = [3@/3f, A”ir (e-~ii%&,) - =#3Ai’ (e-~i~%21,) x 

(IO - II (e-~~~~~S&,)) + t+lsAi’ (e-‘J”*f%&)(Io - Il(e-*ni~Q~s))] x 

[Ai’ + e-m/3q'h (IO .- 11(%3))]-~[Ai'(Q13) + 

e-%2~13+4a/3)q41r (lo - 11(Q13))]-1qi/* dq 

Formula (3.9) is basic for the inv~tigation of the asymptotic behavior of pressure 
as 24 00. Note that the integral in the right-hand side of (3.9) is presented in a 

form convenient for calculating the asymptotics by the saddle-point method. We 

divide the integration interval from 0 to 00 in two subintervals: from 0 to 817 

where El< 1, and from ~1 to 00. It can be shown that the integral over the 

second interval is of the order of exp (- El5 sin a) when z--f 00 , Let us 

consider the integral from 0 to e1 in which the inequa~ties %,I = IQz,sl S-+ 
ofe,Pfa > 1 are valid for sZr2 and &?r, . Using the asymptotic expansion of 

the Airy function in the neighborhood of an infinitely distant point [8] 

(3.10) 

where uk are real coefficients dependent on the ordinal number k [8]. Using form- 
ula (3.10) we obtain for the derivative and the integral of Airy’s function the asympt- 
otic expansion Ca 

Ai’ (z) 
E 

bkiT3k/2 (3.11) 
k=o 

z do 

s Ai (q) dzl - S Ai (x) dx - + Z-'/aexp 
( 
- .&%) fyxII 

0 0 k=O 

1zl-t 00, larg 21 <a 
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where the real constants br and ck depend on the ordinal number k , and ua = 
bs = CO = 1. Let us substitute for the derivatives and integrals of the Airy functions 
their asymptotics determined by (3.11). This can always be done for CL that satisfies 
condition (3,4), since the absolute values of arguments of expressions e+(ls ?&s, 
e-sfii/s C&s, 6&s, and 52,s are smaller than 3t. As in Sect. 2 (the passage from 
(2.11) to (2.12). we carry out the division of polynomials and obtain 

We substitute expansion (3,12) into the right-hand side of (3.9) where integration 
is carried out from 0 to El? and investigate the term k of that expansion 

Ik (0, & a) = 6il,,c,,, k~o-‘f’-3~/~ exp [in (113 - 5k / 4) - (3.13) 
ia (“/a + k)] Ih’r 

Ikl ((‘b 2, a) = 3 exp [‘$)a (0, 5, q, a)] q”“+k&J 

0 

‘Pa = - sg sin cc - 2/s o’f*Ql cos (n/4 +-a) -i Isqcos a +- 
2/3 w”8q-’ sin (n I 4 t_ a)] 

We carry out in the integral I&% the su~t~~tion of variables q = qrfz, which 
brings the upper limit of integration to e&z. It can be shown that the change of 
the upper limit of integration to 00 introduces an error of the order of 

sin a). 
exp ( - elx 

We have 

(3.14) 

To evaluate fWXtiOn rk, when z 3 00 we can use the saddle-point method. 
This is, however, unnecessary here, since for this type of functions q3 (0, qr, a) 
the integral in the right-hand side of (3.14) has been ~or~ghly analyzed. We have 

(see Cl21 ) 

(3. IS) 

In turn, substituting (3.15) into (3.13) and (3.13) into (3.9). when z --t 00 we 

obtain the asymptotics of integral (3.9) 
00 

s 
@I, do% - f, (w, 5) 3 1% (+)” Io6,$l~z+e-Rif16 X (3.17) 

-j&I, k (~~k’~ 
e’l~ik/sm-sk f Q-4c/zg,,* (~1*3-11~~*/4~i f %%) 
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Using the equality cgl, o = I and calculating KS,, by formula (3.16) for 

the principal term of asymptotics (3.17) we obtain 
m 

s Q,, das - 2i 1/~~,e-~i%4z-r exp (_ 2%3--*la&@ni /85*/r) (3.18) 
--co 

As expected, asymptotics (3.17) is independent of angle a. We extend the nota- 
tion IaS (w, CC) to the new variables, and shall use the symbol 1% (0, z - ze) 
to denote series (3.17) in which 5 - 9 has been substituted for 2. This makes 
it possible when z + 00 to write the asymptotics of the integral of @O as 

00 

s G?odwz-- I,,(~,x)--~las(0,x--b)+ 1 (3.19) 

Formulas (2.17) and (3.19) complement each other: the first is a convergent ex- 
pansion in variable z of the integral of aj, at zero , (x > 0), while the second 
is a divergent asymptotic expansion at infinity. In spite of the divergence of series 
(3.19) it is convenient for computation on a computer with a reduced number ofterms 
in the series. 

Pressure perturbations induced by the oscillating triangle tend to dampen as z + 
- 00 according to the exponential law (2.8) with the exponent proportional to 5, 

as z --F oo the damping may also occur in conformity with the exponential faw 

(3.18). However, in that case the exponent is proportional to - 1/G (presence 
in the coefficient of the exponent of power 5 is not taken into account). 

Let us compare these results with the asymptotics of pressure perturbation induced 

by the triangle at rest, o=O As CC-+--, the damping is defined, as 
previously, by formula (2.8), but at a slower rate, since Im OZO* (CO L=-L 0) > 
Im wzO* (0 J= 0). It can be shown that, as z + 00 the properties of asymptotics 

of p1 change: pressure obeys the power Law p1 N FJ*+ Hence, pressure pertur- 

bations induced by the oscillating triangle dampen more rapidly as z-t-too, _ 
than a perturbation induced by a triangle at rest. This is particularly prominent down- 

stream [of the triangle], as x--t 00, where the nature of damping for a#0 
is exponential, and for 0 = 0 of the power type. 

In the investigation of perturbation asymptotics of pressure p1 as co--r00 we 

use integral (2.5) which for z < 0 is obtained in expIicit form as shown in (2.3). 
Using asymptotics (3.11) we write the solution of the dispersed equation (2.7) in the 

form of series [S] 
* oao = e -nilro’l. + ‘Ize- ~i/40--‘lt _+ . . I 

(3.20) 

We determine the quantity B (0, o*J as w -+ co and z < 0 using (3.20) 
and (3. ll), and obtain the principal term of expansion (2.5) 

00 

s 
@&!Js 5 - n exp (o’Jzzee”i14) 

(3.21) 

-c0 

The method of constructing the asymptotics of integral (2.5) when 0 - 00 and 
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3 > 0 is the same as used for deriving the asymptotics of this integral when z + CO, 
except for the selection of angle a. When 6.0 - 00 for the root of (2.7) on the sec- 
ond sheet of the Rtemann surface we have 

W sxU;la 1 o2 =e +ze -3nil4~-‘/. + , . (3.22) 

which implies that at the limit, as w - 03 , the ineqna~ty (3.4) cannot be satisfied, 
since arg wz** - 3% / 4 . This implies that cz is to be selected from the range 

0 < ct < n - arg 02** 

As the result, we write the basic formula for estimate of integral (2.5) as 
Q) co 

s 
CD,&, = - ie-‘4&/s 

s 
e%& (0, q , a) q%q _t 2ni res @,, (a?) (3.23) 

Gr= - ixp co9 a - 2q sii a 

Although the method of evaluation of the integral in the right-hand side of (3.23) 
when o + w somewhat differs from that used for evaluating integral (3.9) when 

5 --+ 00, the result is the same in both cases: the integral approaches zero propor- 
tionally as exp ( _25/z3-‘fPw3/b ~0~~l~~‘l~) * But the second term in the right-h~d~de 
of (3.23) approaches zero as cxp (- w”%~~!“x ) . Hence by retaining in the right- 
hand side of (3.23) only the second principal term we have 

OD 

f 
Qrrdwz.- - n exp (- o’i*~‘!4~)t 0 - 00, x > 0 (3.24) 

-ca 

The expansion of integrals of (D,, and dD19, as o -+ CO are analogous, 
Let us consider once again the integral of @Do and, in accordance with (2. l), 

represent it in the form 
00 00 do 00 ca 

s 
QOdw, = 

I’ %o+z - s %302 - 
s 

@lad%-- 
J 

QD,&2 
(3.25) 

-m -37 -00 -co -co 

The first integral in the right-hand side of (3.25) whose explicit form appears in 
(2.4) is independent of o ; as o - 00 the second integral is, according to (3, 21) 

and (3.24), nonzero only in a small n~g~orho~ of point z = 0, and, similarly, 
the third and fourth integrals are nonzero in the neighborhoods of points z = b and 
.z=u l respectively. Hence, when o - 00, the basic part is played by the dis- 

c~~uous integral (2.4). The integrals of functions @II, @I,, and (Do,, make 
possible only the continuous joining of discontinuities in (2.4) at points x = 0, 2 = 

Since the imaginary part of integral (3.25) is zero as w -+ 00 , pressure 

pl is also determined by formula (2.4). The dependence 
of pX [on 5 ] with o --t co is shown in Fig. 7 for instants 
of time t = 0, 2’ i 8, 2’ i 4, 3T f S, where T = 2n f o, 

by curves I ---IV , respectively. 
Let us show that the derived dependence of pressure on 

x and t as o - 00 is exactly the same as in inviscid 
supersonic stream at slow wall oscillations (1.4). For this 
we rewrite relation (1.4) in dimensional form 

Fig. 7 
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yw* = &2c”%1/a (Mm2 - I)“, ojlo (x*) cos 08 (3.26) 

using (1.1) and retaining 1 as the dimensionless time. In this equation function 
jr0 (z*) defines the triangular form (1.5) with parameters a* and II’ related to 
a and b in the same way as X* to x from formula (1.1). 

Let us determine the pressure induced by wall oscillations (3.26) in the region of 
characteristic dimensions z* = 0 (s3), y * = 0 (E3) at characteristic time /* _I_ 

0 (et) in an inviscid supersonic stream. We have 

p* = p*, -t_ p*, ~~s2c’/4~1/2 (&_f~ _ q-v4, x 

i sign I* - a* “* b* sign w - b+) -t 
b* 

a* _ p sign (z* - a*) 
1 

cos wt’ 

Such coincidence is due to that when w - 00 * the dependence on time must 
allow for the basic boundary layer thickness ($/ - E4). This problem can also be 
solved by using the fundamental concept of Prandtl according to which pressure is to 
be determined by solving the external inviscid problem. 

The author thanks 0. S. Ryzhov and V. L Zhuk for useful discussions. 
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